Leading science, pioneering therapies
CRM Publications

Human Adipose Tissue Derived Pericytes Increase Life Span in Utrn (tm1Ked) Dmd (mdx) /J Mice.

TitleHuman Adipose Tissue Derived Pericytes Increase Life Span in Utrn (tm1Ked) Dmd (mdx) /J Mice.
Publication TypeJournal Article
Year of Publication2014
AuthorsValadares MC, Gomes JP, Castello G, Assoni A, Pellati M, Bueno C, Corselli M, Silva H, Bartolini P, Vainzof M, Margarido PF, Baracat E, Péault B, Zatz M
JournalStem Cell Rev
Date Published2014 Jun 19
ISSN1558-6804
Abstract

Duchenne muscular dystrophy (DMD) is still an untreatable lethal X-linked disorder, which affects 1 in 3500 male births. It is caused by the absence of muscle dystrophin due to mutations in the dystrophin gene. The potential regenerative capacity as well as immune privileged properties of mesenchymal Stem Cells (MSC) has been under investigation for many years in an attempt to treat DMD. One of the questions to be addressed is whether stem cells from distinct sources have comparable clinical effects when injected in murine or canine muscular dystrophy animal models. Many studies comparing different stem cells from various sources were reported but these cells were obtained from different donors and thus with different genetic backgrounds. Here we investigated whether human pericytes obtained from 4 different tissues (muscle, adipose tissue, fallopian tube and endometrium) from the same donor have a similar clinical impact when injected in double mutant Utrn (tm1Ked) Dmd (mdx) /J mice, a clinically relevant model for DMD. After a weekly regimen of intraperitoneal injections of 10(6) cells per 8 weeks we evaluated the motor ability as well as the life span of the treated mice as compared to controls. Our experiment showed that only adipose tissue derived pericytes are able to increase significantly (39 days on average) the life span of affected mice. Microarray analysis showed an inhibition of the interferon pathway by adipose derived pericytes. Our results suggest that the clinical benefit associated with intraperitoneal injections of these adult stem cells is related to immune modulation rather than tissue regeneration.

DOI10.1007/s12015-014-9537-9
Alternate JournalStem Cell Rev
PubMed ID24943487
Publication institute
Other